Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Understanding the mechanisms governing biological invasions has implications for population dynamics, biodiversity, and community assembly. The enemy escape hypothesis posits that escape from enemies such as herbivores and predators that were limiting in the native range helps explain rapid spread in the introduced range. While the enemy escape hypothesis has been widely tested aboveground, data limitations have prevented comparisons of belowground mechanisms for invasive and noninvasive introduced species, which limits our understanding of why only some introduced species become invasive. We assessed the role of soil biota in driving plant invasions in a phylogenetic meta−analysis, incorporating phylogeny in the error structure of the models, and comparing live and sterilized conditioned soils. We found 29 studies and 396 effect size estimates across 103 species that compared live and sterilized soils. We found general positive effects of soil biota for plants (0.099, 95% CI = 0.0266, 0.1714), consistent with a role of soil mutualists. The effect size of soil biota among invaders was 3.2× higher than for natives, the strength of effects was weaker for older conditioning species with a longer introduced history, and enemy escape was stronger for distant relatives. In addition, invasive species had a weaker allocation tradeoff than natives. By demonstrating that the net effect of soil biota is more positive for invasive than native and noninvasive introduced species, weakens over time since introduction, and strengthens as phylogenetic distance increasing, we provide mechanistic insights into the considerable role of soil biota in biological invasions, consistent with the predictions of the enemy escape hypothesis.more » « less
-
Tibouchi, Mehdi; Wang, Huaxiong (Ed.)
-
Collective cell migration is an essential process throughout the lives of multicellular organisms, for example in embryonic development, wound healing and tumour metastasis. Substrates or interfaces associated with these processes are typically curved, with radii of curvature comparable to many cell lengths. Using both artificial geometries and lung alveolospheres derived from human induced pluripotent stem cells, here we show that cells sense multicellular-scale curvature and that it plays a role in regulating collective cell migration. As the curvature of a monolayer increases, cells reduce their collectivity and the multicellular flow field becomes more dynamic. Furthermore, hexagonally shaped cells tend to aggregate in solid-like clusters surrounded by non-hexagonal cells that act as a background fluid. We propose that cells naturally form hexagonally organized clusters to minimize free energy, and the size of these clusters is limited by a bending energy penalty. We observe that cluster size grows linearly as sphere radius increases, which further stabilizes the multicellular flow field and increases cell collectivity. As a result, increasing curvature tends to promote the fluidity in multicellular monolayer. Together, these findings highlight the potential for a fundamental role of curvature in regulating both spatial and temporal characteristics of three-dimensional multicellular systems.more » « less
-
Understanding the mechanisms governing biological invasions has implications for population dynamics, biodiversity, and community assembly. The enemy escape hypothesis posits that escape from enemies such as herbivores and predators that were limiting in the native range helps explain rapid spread in the introduced range. While the enemy escape hypothesis has been widely tested aboveground, data limitations have prevented comparisons of below- ground mechanisms for invasive and noninvasive introduced species, which limits our understanding of why only some introduced species become invasive. We assessed the role of soil biota in driving plant invasions in a phylogenetic meta−analysis, incorpo- rating phylogeny in the error structure of the models, and comparing live and sterilized conditioned soils. We found 29 studies and 396 effect size estimates across 103 species that compared live and sterilized soils. We found general positive effects of soil biota for plants (0.099, 95% CI 0.0266, 0.1714), consistent with a role of soil mutualists. The effect size of soil biota among invaders was 3.2× higher than for natives, the strength of effects was weaker for older conditioning species with a longer introduced history, and enemy escape was stronger for distant relatives. In addition, invasive species had a weaker allocation tradeoff than natives. By demonstrating that the net effect of soil biota is more positive for invasive than native and noninvasive introduced species, weakens over time since introduction, and strengthens as phy- logenetic distance increasing, we provide mechanistic insights into the considerable role of soil biota in bio- logical invasions, consistent with the predictions of the enemy escape hypothesis.more » « less
-
null (Ed.)Abstract Sustained proliferation is a significant driver of cancer progression. Cell-cycle advancement is coupled with cell size, but it remains unclear how multiple cells interact to control their volume in 3D clusters. In this study, we propose a mechano-osmotic model to investigate the evolution of volume dynamics within multicellular systems. Volume control depends on an interplay between multiple cellular constituents, including gap junctions, mechanosensitive ion channels, energy-consuming ion pumps, and the actomyosin cortex, that coordinate to manipulate cellular osmolarity. In connected cells, we show that mechanical loading leads to the emergence of osmotic pressure gradients between cells with consequent increases in cellular ion concentrations driving swelling. We identify how gap junctions can amplify spatial variations in cell volume within multicellular spheroids and, further, describe how the process depends on proliferation-induced solid stress. Our model may provide new insight into the role of gap junctions in breast cancer progression.more » « less
An official website of the United States government
